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Figures 1 & 2. (Left) Overview of the

DataseamGrid computing architecture and

information flow, and (Top) Kentucky map

showing counties with facilities participating in

the DataseamGrid (shown in red).

Virtual Screening hTERT G4 Drug Discovery

Background: The enzyme telomerase is responsible for maintenance of telomeric DNA, which

resides at the ends of chromosomes to protect them from degradation due to multiple rounds of

replication. Human telomerase reverse transcriptase (hTERT), which is not typically present in normal

somatic cells, has been found to be up-regulated in >85% of cancers and allows for their unlimited

growth potential. The hTERT core promoter spans from -180 to +1 bases upstream of the

transcriptional start site. This region contains many runs of guanine tracts which may enable the

formation of multiple G-quadruplexes (G4s) which are four-stranded DNA structures1. Recent

investigations found that >70% of glioblastomas and melanomas that overexpress telomerase contain

mutations in this region and are often the result of point mutations within the putative quadruplex G-

tracts. Therefore, the hTERT G-quadruplex is an excellent target for the repression of telomerase.

Here we show the results of molecular dynamic and modeling simulations, as well as in silico drug

screening aimed at selectively targeting the hTERT quadruplex.
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Figure 5. (A) Negative Staining Electron Micrograph (OpNS-EM) of hTERT quadruplex sequence in Tris buffer (100mM KCl) (scale

bar = 100Å). (B) Single particle reconstruction of EM. (C) Space-filling model of hTERT G4 without 5’ quadruplex stacking (0.96

correlation coefficient when compared to 5b). (D) MD derived structure of hTERT G4 without 5’ quadruplex stacking. (E) MD derived

hTERT G4 with all three quadruplexes stacked (with extraneous bases removed for clarity).

• Circular Dichroism (CD): Spectra were obtained in TBAP (200mM KCl, 1mM EDTA, 10mM tetrabutylammonium phosphate, pH 7)

at 20.0°C in a JASCO-710 spectropolarimeter for annealed segments and the full, SEC purified hTERT sequence to Identify

conformation and number of stacked G-quartets. Oligos were purchased from IDT and Eurofins. Parameters were 20.0°C cell

temperature, scan range of 450nm (or less) to 220nm, 1nm Pitch, 4s response, and averaging of 4 scans. Spectra were normalized

to concentration using the following formula: Δε= mdeg/(32,980*C*L).

• Analytical Ultracentrifugation (AUC): Sedimentation velocity experiments were carried out on a Beckman Coulter ProteomeLab

XL-A centrifuge in TBAP buffer at 20.0°C with a run speed of 50k rpm in continuous mode. Analysis was performed in Sedfit using a

continuous distribution C(s) model (non-interacting species) with 100 scans using wavelengths appropriate for each species (260nm

for DNA, 310-320nm for compounds).

• Electron Microscopy (OpNS-EM): hTERT quadruplex DNA was annealed in Tris buffer (100mM KCl) and purified by SEC followed

by concentration to ~100uM in Amicon 3K MWCO concentrators. Samples were then sent to Creative Biostructure for analysis.

• Molecular Dynamics (MD): The G-quadruplex structure was created as outlined previously1 and MD simulations were run using the

Amber suite of tools on a workstation equipped with two GeForce GTX Titan GPUs. Analysis and clustering of the 100ns trajectories

was performed using the cpptraj module of AmberTools. Calculations of hydrodynamic properties were done using the program

HYDROPRO 103.

• Virtual Drug Screening: Docking was performed using Surflex-Dock 2.112 on the Kentucky DataseamGrid. Over 45 million

compounds were docked at 12 different locations of hTERT from the 2014 and 2016 drug-like libraries from the ZINC database as-

is. Protomols were generated for 12 sites positioned in the loop structures based on the G-quartet residues. Sixty-nine compounds

were purchased from MolPort based on centroids after clustering using a Tanimoto similarity of 0.9 in Schrödinger's Canvas

application.

• Fluorescent Screening: FRET-pair labelled oligonucleotides were annealed in BPEK buffer (6mM Na2HPO4, 2mM NaH2PO4, 1mM

Na2EDTA, 185mM KCl, pH 7.2) and mixed in 96-well plates at a 100:1 ratio of compound to quadruplex and fluorescent emission

was measured at 520nm from 20.2 to 99.0°C in an AB Applied Biosystems Step One RT-PCR. Melt temperatures were determined

from the peak of the 1st derivative of the normalized fluorescence emission curves.

• Hydrodynamic Calculations: Hydrodynamic dimensions were predicted using HYDFIT4 based on experimentally derived values.

Methods
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Figure 6. (A) Plot of axial ratio (p=a/b) vs. longest axis (a) predicted from

hydrodynamic measurements in 200mM KCl TBAP buffer, indicating a

structure of no more than ~55 angstrom length. (B) Circular dichroism spectra

showing hTERT’s dependence on [K+] and the increase in intensity at 260nm.

(C) Relationship between molar absorptivity at 260nm and the number of

contiguous G-quartets.
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Goal: To use the vast computational power of the KY DataseamGrid to rapidly enrich for lead

molecules in the design of novel therapeutics.

Method: Using Surflex-Dock2, a flexible ligand docking software, on the DataseamGrid we can rapidly

screen libraries containing thousands to millions of compounds against protein and nucleic acid

targets that are implicated in disease. A total of 28,000 dedicated virtual processor cores (4,000 UofL,

24,000 Dataseam) allows for computation time equivalent to >2,300 CPU years per month. Routine

screening libraries include the ZINC Drug-like library (24,877,119 compounds), eMolecules (7,016,711

compounds), Molplex (2,100,000 compounds), PubChem (43,010,233). Using the pipeline outlined in

Figure 4 we can rapidly screen and enrich for novel scaffolds that can be further refined as lead hits.

Virtual Screening Targets
PFKFB3, PFKFB4 N-terminal methyltransferases

Choline Kinase Venezuelan equine encephalitis virus

Macrophage Migration Inhibitor Factor Growth Factor Independent 1 (GFI1)

Chemokine Receptor 4 (CXCR4) TNF Receptor-associated Factor 6

Nucleolin Iron Regulatory Protein 1

Arylamine N-acetyltransferases (NAT1, 

NAT2)
Sphingosine Kinase 1

APC2, APC11 E3 Ubiquitin-protein Ligase (UBR5)

Aminoacyltransferase Chemokine CXCL11

Leukotriene B4 Receptors (BLT1, BLT 2) Nuclear Import Receptor (Kpnβ1)

COP9 Signalosome Complex Subunit 5 

(CSN5)
Transaldolase

CaMKK2 Galectin-1

RAS Bcl-2

RAL Glutaminase

Interleukin Receptor 6 (IL-6) IκB kinase 2 (IKK2)

c-Myc RNA Helicase A

hTERT Lactate Dehydrogenase A

Pyruvate Carboxylase DNA Repair Protein (REV1)

D-Dopachrome Tautomerase SOX9

Phosphoserine Aminotransferase BAX
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Tables 1 & 2. (Top) List of successfully targeted

proteins using our massively parallel screening

approach. (Right) List of patents generated as a result

of successful virtual screening campaigns.

The DataseamGrid™ Architecture arranges computing nodes, called Agents, in a hierarchical

fashion, and utilizes special service nodes in each district called Controllers, which are a dedicated

resource. Both Agents and Controllers reside in the school districts inside their private (RFC 1918)

network. On the public internet the primary grid host, called Master, cannot initiate communications

through the various district firewalls, and thus relies on polling requests from the Controllers (and

Agents) to distribute work, collection results, and maintain metadata concerning the overall status of

the system. The DataseamGrid was initially developed as a primarily government funded replacement

for Apple Inc.'s xGrid, which had an analogous architecture.

Job Submission is by researchers that submit versioned datasets to the Master, which synchronizes

with each active Controller. Work request submission then simply references the versioned datasets,

and the runnable package with all the required components is assembled on the Controller, which

itself is responsible for scheduling the task and pushing to the Agent. Figure 1 provides a basic

representation.

The benefits of the DataseamGrid architecture:

• Reduced network traffic across a district’s link when

moving large datasets.

• Insulation of computational activity from temporary

network segmentation events at the district level.

• Allows for tracking of participation by district.

• Provides redundant agent tracking metrics, reducing

chances of over- or under-allocation of work to a

particular district controller.

• Single point of contact for work submission and

management, which simplifies use.

• Ease of scalability.
Figure 3. Number of docking calculations

performed per year using the DataseamGrid.

Q-serve is our in-house queueing and analysis pipeline for job submission to the DataseamGrid, built

by Jon Maguire. Q-serve has three components to allow for a fully automated job submission: a

queue file, configuration file, and a master script. The Queue file contains: target file (receptor:

protein or nucleic acid 3D structure), protomol (negative image of receptor docking site), library of

compounds, and the type of job we want to run. The Configuration file contains variables which are

necessary for the master script, such as what utilization to maintain and the location of other scripts.

The Master script runs periodically using crontab and initiates a series of checks (if it is already

running, utilization level, etc.) to see if it is under the utilization threshold and, if so, submits another

job from the queue. This system runs 24/7/365 and has allowed us to reach >1 billion docking

computations per year (Figure 3). The following is a simplified diagram of the Q-serve

implementation:
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Figure 4. Graphical representation of the Q-serve to DataseamGrid pipeline.

Results 1: Biophysical analyses, molecular dynamics, and EM imaging of the hTERT full core

promoter sequence suggest it forms three contiguous, stacked, parallel quadruplexes (Figures 5 & 6).

Results 2: The full length, contiguously stacked hTERT quadruplex (Figure 5e) was prepared as a receptor

and submitted to the Q-serve/DataseamGrid pipeline where roughly 45 million compounds from the ZINC

database were docked to a total of 12 sites (protomols) generated around the loops and grooves (~500 million

docking calculations). The top 12,000 hits were clustered and sorted to remove redundancies and 69 were

selected based on drug-likeness and visual inspection. Among the 69 tested, 5 have so far have been

confirmed as hTERT G4 interacting ligands and are currently being characterized for their mode of binding.

Results: Identification of more than 38 experimentally validated inhibitors or activators (modulators of

protein function) of proteins implicated in various diseases (Table 1) from virtual screening with hit

rates from 10-66%. This has resulted in >45 research disclosures as well as 19 separate patents

(Table 2), with two drugs making it into clinical trials thus far.
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Figure 7. Results of initial drug screening. (A) FRET melting temperatures for various G4s in the presence of saturating compounds,

demonstrating selective stabilization. (B) CD titrations of hTERT-FL G4 with 0-100 μM of compounds 1, 2, 3, 15, and 18 showing no ICD

or change in overall structure with the exception of compound 3. (C) Table of stoichiometries of binding from AUC measurements where

quadruplexes 1, 2, and 3 of the full length hTERT were used for screening purposes (i.e. Q12 contains the first two G4s and Q23 the

last two G4s). (D) Representative ITC titration curve for compound 1 against the hTERT partial sequence Q23.

Ratio [Compound]/[DNA]

Sequence Comp 2 Comp 3 Comp 15 Comp 18

Q12 1.4 3.1 1.9 1.1

Q23 1.7 3.8 2 1.7

hTERT-FL 2.6 8.6 3.6 2.1
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