Distributed Object Segmentation in Big Spatial Data

Hamid Hamraz, Ph.D Candidate
Department of Computer Science, University of Kentucky
hhamraz@cs.uky.edu www.cs.uky.edu/~hhamraz/

Problem Overview

- Big spatial data is delivered in the shape of several tiles and requires distributed computing.
- Object segmentation is not perfectly parallel because the objects may lie across the tiles.

Related Work

- Multi-core processing
 - · Limited memory and cores
 - Limits the size of problem
- Streaming
 - Manages memory

• Does not help with the time

- Overlapping data units for distributed computing
 - Increases the problem size
 - How to merge overlapping result?

Proposed Approach

Upon segmenting a data unit, identify boundary data

- Edge
- Corner

Master-Slave Processing

Master maintains a global picture

- Assign the slaves to segment units
- Joins the boundary data once ready and send them to slaves for re-segmentation

Slaves segment units

- Send the boundary data to the master
- Re-segment joined boundary data as directed by the master

Segmenting Trees of Entire Robinson Forest

- Implemented using MPI
- Run on the UK HPC cluster
- Segmented nearly two million trees
 - 3 hours using 160 processors
 - 144 times faster than a single processor

Estimating tree numbers based on two million segmented trees

Distribution of Tree Height

Generalization to 3D

- Upon segmenting a cube, boundary data are identified
 - Surface: shared among two cubes
 - Edge: shared among four cubes
 - Corner: shared among eight cubes

 Surface
 Edge
 Corner

Implementation using MapReduce

- Map phase
 - Segment a unit and identify the boundary data
 - Assign a unique key to each of the boundary data, which must be the same across all units sharing the boundary
- Reduce Phase
 - Join all the boundary data pieces provided and re-segment
- No master needed
- Easier to implement once you know MapReduce
- Not as efficient as MPI