Correct Model Selection in Multiple Regression Analyses of Big Data

Katherine Thompson

Department of Statistics, University of Kentucky

October 17, 2017

MOTIVATION

Goals:

- Improve statistical modeling in a variety of application areas
- Correctly identify the relationships present in data sets
- Understand the difficulty in choosing the correct statistical model in big data

OUTLINE

- Introduction to the Challenges
- Methods
- Results
- Conclusions and Future Directions

Image: Image:

Goal: Identify variables related to HDL cholesterol

Data Set:

- Sample Size: n = 5038
- Variables: 176

Challenges:

Big data

Goal: Identify variables related to HDL cholesterol

Data Set:

- Sample Size: n = 5038
- Variables: 176

Challenges:

- Big data
- Small effects

Goal: Identify variables related to HDL cholesterol

Data Set:

- Sample Size: n = 5038
- Variables: 176

Challenges:

- Big data
- Small effects
- Complicated relationships

Subject	Diabetes	LBX118LA	BMXBMI	Serum	RIDRETH1
				Carotenoids	
1	0	17.17	31.26	2.29	three
2	0	7.50	25.49	1.34	three
3	0	8.50	19.60	1.48	four
4	0		28.32	0.93	three
5	0	3.20	19.34	1.90	one
6	0		16.57		four
7	0	3.00	38.03	1.12	one
8	0	12.70	22.55	1.39	four

-

METHODS FOR MODEL SELECTION

Existing Methods Include:

• Forward and Backward Selection

METHODS FOR MODEL SELECTION

Existing Methods Include:

- Forward and Backward Selection
- Subset Selection or Exhaustive Search Methods

METHODS: Exhaustive Search

A B M A B M

3

• Method: Multiple Linear Regression to Identify Optimal Model

B N A B N

- Method: Multiple Linear Regression to Identify Optimal Model
- Compare to an alternative method

< ≣ > <

- Method: Multiple Linear Regression to Identify Optimal Model
- Compare to an alternative method
- Computation: Use University of Kentucky High Performance Computing Center supercomputer

ALTERNATIVE METHOD: Feasible Solutions Algorithm

Feasible Solutions Algorithm (FSA): (Lambert 2016)

• Fast, flexible search algorithm

ALTERNATIVE METHOD: Feasible Solutions Algorithm

Feasible Solutions Algorithm (FSA): (Lambert 2016)

- Fast, flexible search algorithm
- Stochastic in starting point

ALTERNATIVE METHOD: Feasible Solutions Algorithm

Feasible Solutions Algorithm (FSA): (Lambert 2016)

- Fast, flexible search algorithm
- Stochastic in starting point
- Can produce multiple possible models for further exploration

- Andomly select two variables and fit the following model:
 - $\bullet\,$ Diabetes $\sim\,$ height and age

- Q Randomly select two variables and fit the following model:
 - $\bullet~$ Diabetes $\sim~$ height and age
- Swap" variables to find a better model

- Q Randomly select two variables and fit the following model:
 - $\bullet~$ Diabetes $\sim~$ height and age
- Swap" variables to find a better model
 - $\bullet~$ Diabetes $\sim~$ height and age
 - $\bullet~$ Diabetes $\sim~ {\rm weight}$ and age

- Q Randomly select two variables and fit the following model:
 - $\bullet\,$ Diabetes $\sim\,$ height and age
- Swap" variables to find a better model
 - $\bullet~$ Diabetes $\sim~$ height and age
 - Diabetes \sim weight and age
 - Diabetes \sim sex and age

- Q Randomly select two variables and fit the following model:
 - ${\, \bullet \,}$ Diabetes \sim height and age
- Swap" variables to find a better model
 - $\bullet~$ Diabetes $\sim~$ height and age
 - Diabetes \sim weight and age
 - Diabetes $\sim {\rm sex}$ and age
 - Diabetes \sim diet and age

- Sandomly select two variables and fit the following model:
 - $\bullet~$ Diabetes $\sim~$ height and age
- Swap" variables to find the best model
 - $\bullet~$ Diabetes \sim sex and age
- Swap the remaining variable in the model.

- Sandomly select two variables and fit the following model:
 - $\bullet~$ Diabetes $\sim~$ height and age
- Swap" variables to find the best model
 - $\bullet~$ Diabetes \sim sex and age
- Swap the remaining variable in the model.
 - Diabetes $\sim {\rm sex}$ and diet

- Sandomly select two variables and fit the following model:
 - $\bullet~$ Diabetes $\sim~$ height and age
- Swap" variables to find the best model
 - $\bullet~$ Diabetes \sim sex and age
- Swap the remaining variable in the model.
 - Diabetes $\sim {\rm sex}$ and diet
- Continue this process until we can not improve the model, resulting in a possible model.
 - $\bullet~$ Diabetes $\sim~$ sex and diet

For each simulated data set:

• Analyze by calculating the probability that the underlying correct model is the optimal model

For each simulated data set:

- Analyze by calculating the probability that the underlying correct model is the optimal model
- Analyze using FSA and record if any feasible solution is the correct model (underlying truth)

For each simulated data set:

- Analyze by calculating the probability that the underlying correct model is the optimal model
- Analyze using FSA and record if any feasible solution is the correct model (underlying truth)

Notation:

• $\sigma^2 =$ variance of error terms in the regression model

For each simulated data set:

- Analyze by calculating the probability that the underlying correct model is the optimal model
- Analyze using FSA and record if any feasible solution is the correct model (underlying truth)

Notation:

- $\sigma^2 = \text{variance of error terms in the regression model}$
- $\beta_1 = \text{coefficient values for each regression data set}$

RESULTS: Simulated Linear Regression Data

Data for LBXHDD:

• Removed existing detectable effects from the data

Data for LBXHDD:

• Removed existing detectable effects from the data

Created True Model for LBXHDD:

- Hide effects of LBXD01LA, DR2TVK, LBXD01LA*DR2TVK on LBXHDD in data
- Small effects of each covariate

Data for LBXHDD:

• Removed existing detectable effects from the data

Created True Model for LBXHDD:

- Hide effects of LBXD01LA, DR2TVK, LBXD01LA*DR2TVK on LBXHDD in data
- Small effects of each covariate

Model Identified by Exhaustive Search:

• RIDRETH1.3, status2, RIDRETH1.3*status2

Data for LBXHDD:

• Removed existing detectable effects from the data

Created True Model for LBXHDD:

- Hide effects of LBXD01LA, DR2TVK, LBXD01LA*DR2TVK on LBXHDD in data
- Small effects of each covariate

Model Identified by Exhaustive Search:

• RIDRETH1.3, status2, RIDRETH1.3*status2

Models Identified by FSA:

- RIDRETH1.3, status2, RIDRETH1.3*status2
- LBXD01LA, DR2TVK, LBXD01LA*DR2TVK

CONCLUSIONS AND FUTURE DIRECTIONS

Conclusions:

- Using the statistically optimal model results in the incorrect model selection a large percentage of the time.
- FSA can identify correct models in the potential variable sets, even in cases when exhaustive search procedures do not.

Future Directions:

- Consider analyzing models with more than two variables and/or higher order interactions.
- Derive a hypothesis to test that a selected model is correct.

References and Contact Information

Acknowledgements:

• Thanks to the University of Kentucky High Performance Computing Center for the use of the supercomputer for simulation data analysis.

References:

- Hofe, Carolyn R., et al. "Fruit and vegetable intake, as reflected by serum carotenoid concentrations, predicts reduced probability of polychlorinated biphenylassociated risk for type 2 diabetes: National Health and Nutrition Examination Survey 2003-2004." Nutrition research 34.4 (2014): 285-293.
- Joshua Lambert (2016). rFSA: Feasible Solution Algorithm for Finding Best Subsets and Interactions. R package version 0.1.1. https://CRAN.R-project.org/package=rFSA

Contact Information:

• Katherine Thompson: katherine.thompson@uky.edu