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Introduction

MOTIVATION

Goals:

Improve statistical modeling in a variety of application areas

Correctly identify the relationships present in data sets

Understand the difficulty in choosing the correct statistical
model in big data
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OUTLINE

Introduction to the Challenges

Methods

Results

Conclusions and Future Directions
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MOTIVATING EXAMPLE: NHANES Data (Hofe et al. 2014)

Goal: Identify variables related to HDL cholesterol

Data Set:

Sample Size: n = 5038

Variables: 176

Challenges:

Big data

Small effects

Complicated relationships
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MOTIVATING EXAMPLE: NHANES Data (Hofe et al. 2014)

Subject Diabetes LBX118LA BMXBMI Serum RIDRETH1
Carotenoids

1 0 17.17 31.26 2.29 three
2 0 7.50 25.49 1.34 three
3 0 8.50 19.60 1.48 four
4 0 28.32 0.93 three
5 0 3.20 19.34 1.90 one
6 0 16.57 four
7 0 3.00 38.03 1.12 one
8 0 12.70 22.55 1.39 four
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METHODS FOR MODEL SELECTION

Existing Methods Include:

Forward and Backward Selection

Subset Selection or Exhaustive Search Methods
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METHODS: Exhaustive Search
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METHODS: Exhaustive Search
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METHODS: Exhaustive Search
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Even if we can check all possible models, what are the chances of
identifying the correct model?

Katherine Thompson Commonwealth Computational Summit 2017



Introduction

METHODS: Exhaustive Search

● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

0e+00 2e+05 4e+05 6e+05
Number of Variables in Data Set

N
um

be
r 

of
 M

od
el

s 
to

 C
he

ck

DLX

0
5e

+
10

1.
5e

+
11

2.
5e

+
11

Even if we can check all possible models, what are the chances of
identifying the correct model?

Katherine Thompson Commonwealth Computational Summit 2017



Introduction

METHODS

Goal: Calculate this probability as a function of the effects and
variation in the data.

Method: Multiple Linear Regression to Identify Optimal Model

Compare to an alternative method

Computation: Use University of Kentucky High Performance
Computing Center supercomputer
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ALTERNATIVE METHOD: Feasible Solutions Algorithm

Feasible Solutions Algorithm (FSA): (Lambert 2016)

Fast, flexible search algorithm

Stochastic in starting point

Can produce multiple possible models for further exploration
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ALTERNATIVE METHOD: FSA Example

Challenge: Suppose we are interested in modeling diabetes risk
using two of the following: height, weight, age, sex, and diet

1 Randomly select two variables and fit the following model:

Diabetes ∼ height and age

2 “Swap” variables to find a better model

Diabetes ∼ height and age
Diabetes ∼ weight and age
Diabetes ∼ sex and age
Diabetes ∼ diet and age
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Diabetes ∼ height and age

2 “Swap” variables to find the best model
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3 Swap the remaining variable in the model.
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RESULTS: Simulated Linear Regression Data

For each simulated data set:

Analyze by calculating the probability that the underlying
correct model is the optimal model

Analyze using FSA and record if any feasible solution is the
correct model (underlying truth)

Notation:

σ2 = variance of error terms in the regression model

β1 = coefficient values for each regression data set
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RESULTS: Simulated Linear Regression Data
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RESULTS: Example Based on NHANES Data

Data for LBXHDD:

Removed existing detectable effects from the data

Created True Model for LBXHDD:

Hide effects of LBXD01LA, DR2TVK, LBXD01LA*DR2TVK
on LBXHDD in data

Small effects of each covariate

Model Identified by Exhaustive Search:

RIDRETH1.3, status2, RIDRETH1.3*status2

Models Identified by FSA:

RIDRETH1.3, status2, RIDRETH1.3*status2

LBXD01LA, DR2TVK, LBXD01LA*DR2TVK
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CONCLUSIONS AND FUTURE DIRECTIONS

Conclusions:

Using the statistically optimal model results in the incorrect
model selection a large percentage of the time.

FSA can identify correct models in the potential variable sets,
even in cases when exhaustive search procedures do not.

Future Directions:

Consider analyzing models with more than two variables
and/or higher order interactions.

Derive a hypothesis to test that a selected model is correct.

Katherine Thompson Commonwealth Computational Summit 2017



Introduction

References and Contact Information

Acknowledgements:

Thanks to the University of Kentucky High Performance Computing
Center for the use of the supercomputer for simulation data analysis.

References:

Hofe, Carolyn R., et al. “Fruit and vegetable intake, as reflected by
serum carotenoid concentrations, predicts reduced probability of
polychlorinated biphenylassociated risk for type 2 diabetes: National
Health and Nutrition Examination Survey 2003-2004.” Nutrition
research 34.4 (2014): 285-293.
Joshua Lambert (2016). rFSA: Feasible Solution Algorithm for Finding
Best Subsets and Interactions. R package version 0.1.1.
https://CRAN.R-project.org/package=rFSA

Contact Information:

Katherine Thompson: katherine.thompson@uky.edu

Katherine Thompson Commonwealth Computational Summit 2017

https://CRAN.R-project.org/package=rFSA

	Introduction

