ACADEMIC HPC IN THE AGE OF A

Dan Stanzione Executive Director, TACC Associate Vice President for Research, UT-Austin

Commonwealth Computational Summit

University of Kentucky October 2023

TACC - 2023

ТАСС

TEXAS

A QUICK TACC REMINDER

- We operate the Frontera, Stampede-2, Jetstream, and Chameleon systems for the National Science Foundation
- Longhorn and Lonestar-6 for our Texas academic and industry users.
- Altogether, ~20k servers, >1M CPU cores, 1k GPUs
- About seven billion core hours over several million jobs per year.

THIS PAST 12 MONTHS HAS BEEN A WATERSHED FOR AI

- ChatGPT was the "Sputnik moment" in an already building wave.
 - Al has been capturing headlines for the last 7-8 years.
 - The release of Transformers (from Google) unleashed the ability to scale to enormous sizes.
 - But ChatGPT changed everything, especially public perception.
- There is now a global "AI Arms Race", leading to a scramble (in both public and private sectors) for:
 - ► Funding
 - ► Expertise
 - Regulation/Policy
- I'm regularly hearing about billion-dollar machine orders paid for entirely by venture money to train products that don't yet exist.
- ► AI and HPC are deeply intertwined so academic HPC can't pretend this is business as usual.
 - Modern AI would not exist without scientific supercomputing

THREE MAIN THEMES

- How does this change the hardware/software we deploy?
 - Or what we can get?
- What does this mean for our workloads and user base?
- What do we need to do about our operations?
 - Funding, people, day to day ops

IN MANY WAYS, AI VINDICATES THE "HPC WAY"

- ► AI needs fast interconnects. We had them, the cloud and the enterprise did not.
- Al needs message passing; MPI was built for HPC, but is now the standard library for transformer-based generative Al wave (e.g. ChatGPT, DeepSpeed, etc.).
- Al needs heterogeneity GPUs for general purpose compute came out of the HPC world.
- This means AI needs HPC hardware (probably good) and HPC programmers (good if you are one, bad if you need to hire one).

AI HARDWARE WILL DOMINATE

- ► Per Hyperion:
 - ► The market for Al-driven hardware will be \$300B/year in 2025.
 - ► The market for "pure" HPC hardware will be \$10B/year in 2025
 - Guess which will get more vendor attention?

AI HARDWARE WILL DOMINATE

 Interconnects, filesystems likely to be the *same* for AI. (More on that in a few minutes). So, AI momentum will be good for Academic HPC.

Processors – will be similar, but not the same (lower precision, for instance).

- We are unlikely to be able to deeply influence what gets built (maybe some nudges around the edges, e.g. memory controllers).
- We are more likely to need to adapt.
- In general, if the cloud folks won't buy it, it probably won't succeed so we should buy that.
- ► Another downside for us, in the short term, is that GPU prices are through the roof.
 - ► It is cheaper per ounce to buy gold bars than GPU sockets.

ADAPTING TO THE MARKET

- This isn't actually a new problem in supercomputing.
 - And academics tend to lead the market on this.
- In 1991, the cold war was ending, which was killing the unlimited government budgets for vector-based custom silicon supercomputers. Cray, SGI, Thinking Machines, Convex, Raytheon Supercomputing, many other companies were falling apart – most didn't survive.
- At NASA Goddard, Thomas Sterling and Don Becker started the "Beowulf" project exactly 30 years ago.
 - ► In Thomas' exact words, those of us doing scientific computing needed to be "bottom feeding scumsuckers" words I've built me career around ;-).
- The gist silicon is expensive, use the commodity parts.
 - Step 1 Don wrote network drivers for this thing called "Linux". First time it talked via Ethernet. That worked out.
 - Step 2 Come up with ways to use commodity processors.
 - Almost all Top 500 machines since have used this.
 - Even the addition of GPUs to HPC was about riding the commodity (gaming) markets.
- Universities led, agencies followed kicking and screaming (DOE still makes NRE investments with vendors).
- WE CAN DO THIS AGAIN and this time we have more to offer in the other directions.

INTERCONNECTS ARE ONLY GROWING IN IMPORTANCE

- ► Interconnects have *always* been critical for HPC.
 - Mostly latency, but also bandwidth.
- The long time cloud rallying cry was "you don't need all that expensive interconnect bandwidth if it's not HPC".
- ▶ Then AI came along...

INTERCONNECTS ARE ONLY GROWING IN IMPORTANCE – AI

Meta **Time Spent in Networking** 70% 60% 57% 50% 38% 40% 35% 30% 18% 20% 10% 0% M1 M2 M3 M4 Ranking requires high injection & bisection bandwidth M# = ML model

- Often, one network rail per GPU
- Both latency *and* bandwidth seems to matter.
- The need for good interconnect is even *more* important than in HPC.
- And AI is the 800lb gorilla to HPC's modest sized chimp.
- This is unleashing new investments in networking.

LOOKING FORWARD ON INTERCONNECTS...

- What are our options for our next system?
- ► If we "stay the course":
 - Infiniband
 - ► Resurgent OPA
 - Slingshot
 - Rockport
 - ► Low-latency ethernet? ←- several vendors here, from the traditional, to, well, Amazon.

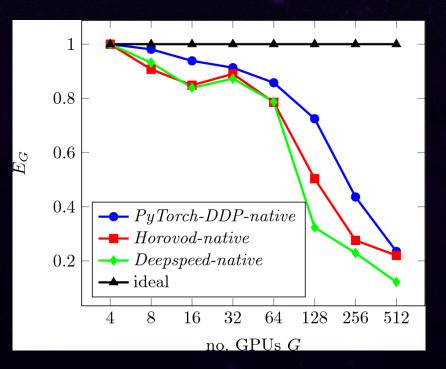
CONCERNS IN THE TRADITIONAL PATH

- Vendor consolidation may dictate choice:
 - Will Slinghot play outside of HP-E Systems? Will Mellanox favor NVIDIA? Whither Intel and AMD?
 - These may be more important than any *technical* problems we'd have with any of these otherwise excellent products.
- How many endpoints will future fabrics need?
- What share of the budget will they take?
- Are new options viable?

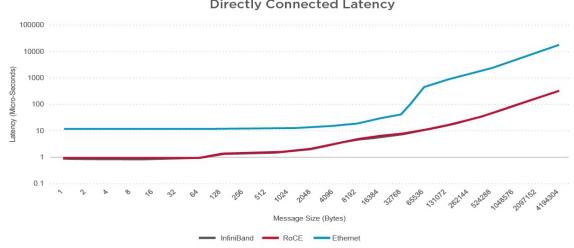
THINKING ABOUT ENDPOINTS

- Lately, heterogeneous systems have seen node counts actually decline...
- But rails per node going *up*.
 - Are we better off with a quad-CPU, quad-GPU node with 4 network rails, or one of each?
 - The "one of each" might be cheaper and simpler... but you have to adopt distributed memory (more on that later).
- Regardless, that might mean a 4k (node) system would have 16k network endpoints.
- And if you did a 16k "cheap" node system, but disaggregated the accelerators, storage and remote memory...
 - Would 32k or more network endpoints be unrealistic?

BUT SHOULD THEY EAT A LARGER AMOUNT OF SYSTEM BUDGET?


- Or should we be more clever?
- Compression seems to have serious benefits with large messages (often in AI), and is almost free (particularly if you put processing in the network path – e.g. DPU – or you have like 192 cores on a node).
- But since we are here to talk about network *libraries*, how much is the physical network vs. library vs. application?

IT IS *NOT* THE APPLICATION FRAMEWORKS


- Pytorch vs. Deepspeed vs.
 Horovod not much significant difference there (for Al apps).
- Note all of these rely on MPI under the covers to scale.
- Aach et al, "Large scale performance analysis of distributed deep learning frameworks for convolutional neural networks", June 2023

TEXAS

16

IT MAY NOT SO MUCH BE THE NETWORK HARDWARE...

Directly Connected Latency

- ► It might be the communications software.
- "Regular" ethernet sucks but add RoCE at same BW as IB...
- (highly biased source: Broadcom)

TEXAS

USERS AND WORKLOADS

- ▶ First of all, we are all seeing lots and lots more AI users.
 - We need to adapt (systems, policies and support) to meet the needs of these highly dynamic workloads.
 - Maybe less shared filesystem?
 - Container support a 100% must but we should do that anyway.
 - ► Staff need to support this now too but performance tuning is performance tuning.
- We also need to *protect* the role of traditional modeling and simulation in scientific computing...

PROTECTING TRADITIONAL MOD/SIM

- On the one hand we need to push users (gently) to modernize code, and exploit GPUs/heterogeneity.
 - There is increasing evidence we can *theoretically* get almost all algorithms to work at least OK on GPUs, and some have huge advantages (see, for instance, the Exascale Computing Project at DOE).
- On the other hand a lot of the *actual code* in existence probably 90% of the code and 50% of the workload – still won't work on GPUs today.
 - So, giving them an Al-only machine is a serious problem. But lots of places are doing it anyway, which works as long as there are other places to go.
 - ► At TACC, we have committed to our users who need CPUs:

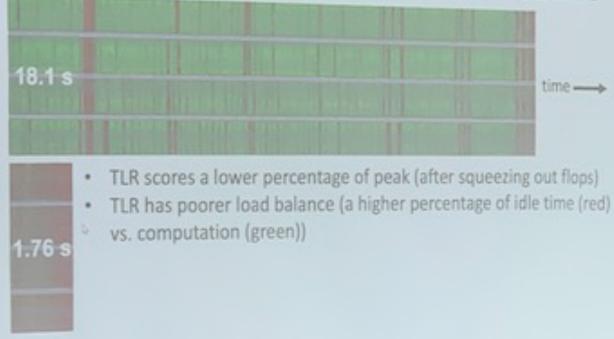
We will have >1M CPU cores on Horizon

BLENDING AND POSITIVE FEEDBACK

- ▶ The notion of "AI Users" and "HPC Users" won't hold up for long.
- There are a diversity of ways to use "AI for Science", and we need to help our *entire* user bases get there.
- The converse is also true, and perhaps more strongly true.
 - Given that the vast number of weights in neural nets are effectively zero, perhaps knowing something about sparse matrix methods could provide an order-of-magnitude improvement in their *HUNDRED BILLION DOLLAR TRAINING BUDGETS*.
 - Scientific computing has a 60 year head start on this.
 - As they scale to many nodes (ChatGPT trains on 9,000 GPUs), squeezing more GPUs in a box is unsustainable. They might want to learn about distributed memory algorithms (you know, the thing we had to do to make Beowulf clusters work starting 30 years ago.
- HPC is not only necessary for AI, we have the algorithms to move AI forward (and the obligation to do it)...

HPC, AI HARDWARE, AND SUSTAINABILITY

- ► To borrow from my friend David Keyes:
- As computational infrastructure demands a growing sector of research budgets and global energy expenditure, we must enhance utilization efficiency.
- ► As a community, we have excelled at this historically in three aspects:
 - architectures
 - applications
 - algorithms
- Among other opportunities, algorithmic opportunities abound:
 - reduced rank representations/ reduced precision representations


Our journey in tuned approximation began in 2018 with these time traces...

1.00

... for factorization of a dense 54K covariance matrix on four 32-core nodes of Shaheen-2

Dense Tile-based Cholesky factorization (Chameleon)

Tile low rank (TLR) Cholesky factorization (HiCMA)

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

Exploit Lower Rank Algorithms

AI HARDWARE FOR SCIENCE H100 PERFORMANCE ACROSS PRECISIONS

	FP64	34 teraFLOPS		
Source: NVIDIA	FP64 Tensor Core	67 teraFLOPS		
 For Vector units, SP is unsurprisingly 2x DP. For Matrix units, it.s 15-1!!! At FP16, 2PF *Per socket* Maybe we need to spend a bit more time on using mixed precision Matrix ops, given the 30X advantage 				
	FP32	67 teraFLOPS		
	TF32 Tensor Core	989 teraFLOPS*		
	BFLOAT16 Tensor Core	1,979 teraFLOPS*		
	FP16 Tensor Core	1,979 teraFLOPS*		
	FP8 Tensor Core	3,958 teraFLOPS*		

TEXAS

ТѦСС

► At FP16, 2PF *Pe socket*

Source: NVIDIA

GPU ADVANTAGE – NAÏVE FIRST CUT

	TFlops	Watts	Gflops/Watt	BW	Flops/Byte
Intel ICX (Dual- Socket)	5.9	540	10.93	300	20
AMD Milan (Dual- Socket)	5.1	560	9.11	300	17
AMD MI250x	47.9	560	85.54	3277	15
NVIDIA A100	9.7	400	24.25	1600	6
NVIDIA A100 (Tensor)	19.5	400	48.75	1600	12

In terms of FLOPS/Watt, GPUs clearly win right now!

Even at this level, the GPU cost/TF advantage isn't that clear cut (Assume a node with two A100 cards cost 3x a node with no GPUs).

DON'T FORGET OPERATIONS

- Don't forget, AI impacts us the way it does other organizations as well.
- I haven't made the users face AI chatbots directly yet, but ---
 - They actually do write tickets better than staff...
 - ...when not completely lying
 - ▶ We do 9k tickets per year we have a system now that can write answers, trained on our docs.
 - Soon, we will auto-generate a draft of every ticket that will go to the staff member assigned for review.
- ► Infinite possibilities in scheduling, performance monitoring, fault prediction, etc.
- And everybody doing coding should be getting help from AI.
 - ► Jupyter-enabled code assistant being deployed trained on the TACC API docs.
 - ► E.g. "generate some code to copy this data to Frontera". "Generate code to start WRF on Stampede-3".
 - Note, it is help... you still have to know how to code!!!

THE POLICY SIDE IS CATCHING UP

 NAIRR, CREATE-AI Act, etc. will push the funding opportunities forward (as discussed earlier today).

TEXAS

Strengthening and Democratizing the U.S. Artificial Intelligence Innovation Ecosystem

An Implementation Plan for a National Artificial Intelligence Research Resource

January 2023

OH YEAH, AND NEW STUFF AT TACC:

- Stampede-3 was announced this summer (Intel)
 - ▶ 560 nodes Sapphire Rapids with High Bandwidth memory
 - ► Hang on to some Ice Lake and Skylake Xeon nodes from S2 (~1,300 nodes).
 - A little bit of Intel Ponte Vechio GPU (80 GPUs, 20 nodes)
 - ▶ New storage and interconnect (OPA 400Gbps) , ~2k nodes total
- Vista Pre-Horizon bridge system (NVIDIA)
 - Grace-Grace and Grace-Hopper (later 23/early 2024) 500-600 nodes and Infinband.
- Lonestar-6 will continue to expand (AMD)
 - ► ~600 Milan Nodes
 - VM-queues for smaller throughput jobs
 - (Also 85 GPU nodes with A100)
 - ► APUs to be added.

CONCLUSIONS

- ► AI is here to stay, and it impacts virtually everything Academic HPC does...
- "Al for Science" for our scientific users
 - But don't forget the traditional stuff!
- "CI for AI" to translate what we need from our knowledge base to the AI community.
- "Al Hardware for Science" to exploit Al hardware advantages in more sustainable scientific computing.
- ► Don't forget AI in Operations we need to modernize like everyone else.
- ► Future funding is going to pivot be ready.

