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Goal and Challenges
Goal: efficiently explore high-dimensional chemical spaces for fast and accurate 
discovery and design of materials with desired functional properties

The high-dimensionality of the chemical space is the result of the diverse characterization 
of materials across multiple scales:

• Macroscale à chemical composition (concentration of atoms of different elements)

• Micro-scale à size and orientation of micro-structures

• Nano-scale à Arrangement of atoms of different elements and orientation of 
interatomic bonds

Challenges: state-of-the-art experimental (in-vivo) and computational (in-vitro) 
approaches are impractical to explore high-dimensional chemical spaces

• Experiments are labor-intensive and time-consuming

• Computational methods are expensive
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Proposed Solution: Surrogate Models

• Surrogate models significantly lower the computational cost of expensive explorations of high-
dimensional chemical spaces while maintaining sufficient accuracy

• For many applications, the structure of the physical system can be mapped onto a graph

     Examples:
– Atomic modeling (addressed in this talk): nodes of the graph = atoms
                                                                             edges of the graph = interatomic bonds
– Finite element simulations: nodes of the graph = vertices of the mesh
                                                     edges of the graph = connectivity of the mesh
– Transportation: nodes of the graph = neighborhoods or cities
                               edges of the graph = roads or highways

• Whenever the data can be expressed in the format of a graph, graph neural networks (GNNs) 
have been identified as promising tools to extract relevant nodal and graph-level features that 
describe the dynamics of the physical system
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Graph Neural Networks (GNNs)
The architecture of a GNN is made of:

1. a graph embedding layer
2. hidden graph layers aim at capturing short range interactions between nodes in the 

graph
3. pooling layers interleaved with graph layers synthetize information related to 

adjacent nodes via aggregation
4. fully connected (FC) dense layers at the end of the architecture to capture effects 

that global features of the graph have over the target properties of interest

Convolutional operations aggregate information from neighboring nodes
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HydraGNN: Distributed PyTorch Implementation of Multi-Headed 
GNNs
https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN 

HydraGNN simultaneously enables the following computational capabilities: 

• Multi-task learning (MTL) for stabilization by extracting physics correlations between 
multiple target properties of interest

• Equivariant message passing layers to take advantage of symmetries in the data

• Transferable Learning for extrapolation of accurate predictions from smaller to larger 
atomic systems

• Scalable training with Distribute Data Parallelism (DDP) for large scale training on 
massive volumes of data

https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN
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HydraGNN: Multi-Task Learning (MTL)
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Conversion 
of lattice 
structure 
into a graph

MTL uses one single HydraGNN to simultaneously predict all material properties of 
interest
MTL uses each property as a mutual regularizer of the others, thereby 
counteracting the curse of dimensionality when data is provided in small volume 
and defined in a high dimensional space

HydraGNN: Multi-Task Learning
Condensed Matter Physics: Solid Solution Alloys
L.P., M. et al., Multi-task graph neural networks for simultaneous prediction of global and atomic properties in 
ferromagnetic systems, https://iopscience.iop.org/article/10.1088/2632-2153/ac6a51/meta 

https://iopscience.iop.org/article/10.1088/2632-2153/ac6a51/meta
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HydraGNN: Multi-Task Learning - Numerical Results - FePt
The GCNN models are implemented in PyTorch

70 % - 15 % - 15 % splitting of dataset between training, 
validation, and testing

The splitting is stratified across compositions

Architecture: 6 Conv layers, 20 channels for each conv layer
                        every head: 2 MLP layers, 50 neurons per layer

Adam used as optimizer for training with learning rate = 1e-4

No hyperparameter tuning performed

PNA aggregation outperformed GIN and GAT in 
accuracy
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HydraGNN: Multi-Task Learning 
Numerical Results - FePt

Probability distributions functions of prediction errors for mixing enthalpy (left), atomic charge 
transfer (center), and atomic magnetic moment (right)

H = single prediction on mixing enthalpy
C = single prediction on charge transfer
M = single prediction on magnetic moment

HM = prediction on mixing enthalpy + magnetic moment
HC = prediction on mixing enthalpy + charge transfer
HCM = prediction on all three properties
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HydraGNN: Equivariant Architecture
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HydraGNN: Equivariant Architecture
Numerical results – Ultraviolet-visible (UV-vis) spectrum of organic molecules
DL architectures are equivariant if their behavior is consistent under rotations and symmetries applied to 
the input graph.

Equivariant features can reduce the amount of data required by DL models to reach a desired accuracy.
Even if UV-vis spectrum is invariant, enforcing equivariance in the message passing allows to transfer the 
learnt DL embedding to other predictive tasks where there target property is equivariant. 

UV-vis spectroscopy measures the amount of light at ultraviolet or visible wavelengths absorbed by or transmitted 
through a sample (in our case, a molecule) 
Experimental measurement of UV-vis spectrum are obtained by hitting a molecule with beams of light in the UV-vis 
range (vis. range: [380 nm, 750nm] – UV range: [100nm, 400 nm]) 

The UV-vis spectrum is used to: 

• Identify chemical species present in a material or produced during a chemical reactions 
• Grow bacteria for study 
• Perform drug design by identifying molecules that are easy to engage in chemical reactions 
• Quantify the number of nucleic acids (DNA or RNA) to determine their average concentrations in a mixture, as well as their purity 

Numerical methods of UV-vis spectrum require running time-dependent density functional theory calculations 
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HydraGNN: Equivariant Architecture
Numerical results – Ultraviolet-visible (UV-vis) spectrum of organic molecules
GDB-9-Ex : Electronic excitation spectrum for GDB-9 molecules https://www.osti.gov/biblio/1890227
M. Lupo Pasini et al. Two excited-state datasets for quantum chemical UV-vis spectra of organic 
molecules, Nature Scientific Data, Volume 10, Issue 546

https://www.osti.gov/biblio/1890227
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HydraGNN: Equivariant Architecture
Numerical results – Ultraviolet-visible (UV-vis) spectrum of organic molecules
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HydraGNN: Transferable Learning
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HydraGNN: Transferable Learning
Open-source dataset 
Solid Solution Nickel-Platinum (NiPt)
ORNL_AISD_NiPt https://www.osti.gov/biblio/1958172 

Each atomic sample has a disordered phase obtained 
running geometry optimization that starts from an initial 
regular crystal structure of type face-centered cubic 
(FCC) crystal structure.

65,046 atomic structures with 256 atoms 
63,936 atomic structures with 864 atoms 
61,997 atomic structures with 2,048 atoms

Figure: nickel-
platinum (NiPt) solid 
solution binary alloy 
with 50 % chemical 
concentration of Ni 
and 50 % chemical 
concentration of Pt. 

https://www.osti.gov/biblio/1958172
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Numerical Results
Transfer predictions of GCNN trained from 
smaller lattices to larger lattices 
extrapolate 
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Linear scaling of GCNN training time with respect to lattices of increasing size

HydraGNN: Transferable Learning
Numerical Results: Solid Solution NiPt
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HydraGNN: Scalable Training
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HydraGNN: Distributed Training with Distributed Data Parallelism

Intrinsic Multi-Tasking allows for Algorithmic Scalability
 
Distributed Data Parallelism allows for High-Performance Computing (HPC) scalability

HydraGNN_replica_1 HydraGNN_replica_2 HydraGNN_replica_P…

Process_1 Process_2 Process_P

Training data batch 1 Training data batch 2 Training data batch P

Data exchange Data exchange Data exchange
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Datasets:

• PCQM4Mv2 (~ 3 million molecules)
https://ogb.stanford.edu/docs/lsc/pcqm4mv2/

• AISD HOMO-LUMO (~ 10 million molecules)
https://www.osti.gov/dataexplorer/biblio/data
set/1869409

ADIOS2 library is used for scalable data 
reading

Distributed Data Parallelism is used for scalable 
training of the HydraGNN model

Results: linear scaling of data reading + training 
using up to 1,024 NVIDIA V100 GPUs on OLCF 
Summit and 1,024 NVIDIA GPUs on NERSC 
Perlmutter

HydraGNN: Distributed Training with Distributed Data Parallelism 
Portability and scalability across diverse HPC environments

https://ogb.stanford.edu/docs/lsc/pcqm4mv2/
https://www.osti.gov/dataexplorer/biblio/dataset/1869409
https://www.osti.gov/dataexplorer/biblio/dataset/1869409
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Summary

HydraGNN is an ORNL branded AI architecture developed within the AISD thrust of the AI Initiative that 
simultaneously:
• Performs multi-task learning https://iopscience.iop.org/article/10.1088/2632-2153/ac6a51/meta

• Exploits both explicit and implicit correlations to stabilize the training 

• Allows for flexible choice of information exchange policies implemented in message passing layers

• Includes equivariance

• Scales linearly on leadership-class supercomputing facilities

• Ports training seamlessly on various computing platforms

HydraGNN has been used for:
• Successful applications to material science, molecular design, neutron spectroscopy, and structural 

engineering

These enhancements and applications show HydraGNN’s relevance to the lab’s mission

• Strong integration with the Design product, the ASCR program, and ORNL facilities

https://iopscience.iop.org/article/10.1088/2632-2153/ac6a51/meta
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Future Work

HydraGNN training for imbalanced multi-source multi-fidelity data

• Train HydraGNN model to predict UV-vis spectra of organic molecules using 
– Low fidelity data à time-dependent density functional tight-binding (TD-DFTB)
– Intermediate fidelity data à time-dependent density functional theory (TD-DFT)
– High fidelity data à Equation of motion coupled cluster singles and doubles (EOM-CCSD)

Generative Models

• Develop generative diffusion models in HydraGNN to perform scalable and robust 
exploration of new chemical compounds
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Thank you!

Questions?
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1. Organic molecular compounds
• Small molecules (with at most hundreds of atoms)
• Proteins (typically contain at least thousands of atoms)
• Nucleic acids

2.   Inorganic compounds
• Alloys 
• Zeolites

Examples of targeted applications include, but are not limited to: 

i. renewable energy (e.g., solar cells, organic photovoltaics, and organic light-emitting 
diodes) 

ii. energy storage (e.g., batteries and supercapacitors) 
iii. carbon capture and sequestration 
iv. materials innovation (e.g., drugs, or materials with desired conductivity, thermal stability, 

and catalytic activity) 
v. Genomics (protein synthesis)

Examples of interest to US-DOE
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Tot. training time = Training time of convolutional layers + (Number of heads X training time for each head) 

Blue: wall-clock time to train HydraGNN 
on all three material properties

Green: wall-clock time to train 
HydraGNN on two material properties

Red: single task training

H = single prediction on mixing enthalpy
C = single prediction on charge transfer
M = single prediction on magnetic moment

HM = prediction on mixing enthalpy + magnetic moment
HC = prediction on mixing enthalpy + charge transfer
HCM = prediction on all three properties

Training time of convolutional layers does NOT change with the number of properties simultaneously 
predicted à computational savings

HydraGNN: Multi-Task Learning 
Numerical Results - FePt
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HydraGNN: Equivariant Architecture
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HydraGNN: Equivariant Architecture
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Dataset splitting: 80% training – 10% validation – 10% testing

GCNN architecture:

• Radius cutoff of 5.0 Angstrom for graph connectivity
• 6 principal neighborhood aggregation (PNA) 

convolutional layers
• 3 fully connected layers
• 50 neurons for each hidden layer 

Training:

• Stochastic optimizer: AdamW
• Number of epochs: 50
• Batch size: 32 samples
• Early stopping patience: 10 epochs

Baseline training with GCNN model trained and validated on lattices 
of the same size

Test MAE: 0.0028 eV/atom

Test MAE: 0.0026 eV/atom Test MAE: 0.0018 eV/atom

HydraGNN: Transferable Learning
Numerical Results: Solid Solution NiPt
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6. HydraGNN: reliable uncertainty quantification over vast regions 
of the chemical space
Uncertainty quantification for prediction of formation energy of solid solution alloys and organic 
molecules

AISD Surrogates members: Max Lupo Pasini, Pei Zhang 
Assurance Thrust: Samuel Temple Reeve, Siyan Liu, Dan Lu
Datasets: Organic molecules - QM9

Molecules with fluorine were not used 
for training

Results:
During validation, PI3NN helps 
HydraGNN capture out of distribution 
samples when molecules with fluorine 
are passed to the model for inference

In-distribution UQ for 
molecules without fluorine

Out-of-distribution UQ for 
molecules with fluorine
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7. Released Datasets from May 2022 through December 2022
– GS Jung, M. Lupo Pasini, S. Irle, ORNL_AISD_NiNb, 

https://www.osti.gov/dataexplorer/biblio/dataset/1890159 United States: N. p., 2022. 
Web. doi:10.13139/OLCF/1890159.

     Contains 109,932 atomic configurations
– M. Lupo Pasini, P. Yoo, K. Mehta S. Irle, GDB-9-Ex: Quantum chemical prediction of UV/Vis 

absorption spectra for GDB-9 molecules. 
https://www.osti.gov/dataexplorer/biblio/dataset/1890227 

     Contains 96,766 organic molecules
– M. Lupo Pasini, K. Mehta, P. Yoo, S. Irle, ORNL_AISD-Ex: Quantum chemical prediction of 

UV/Vis absorption spectra for over 10 million molecules. (Submitted for review to OLCF)
     Contains 10,502,000 million molecules
– M. Karabin, M. Lupo Pasini, Markus Eisenbach, ORNL_AISD_NiPt: data for solid solution 

binary alloy NiPt (In prerapation)
     Contains 240,000 atomic configurations

https://www.osti.gov/dataexplorer/biblio/dataset/1890159
https://www.osti.gov/dataexplorer/biblio/dataset/1890227
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Publications from October 2021 through May 2022
Collaboration with OLCF on scalable training of generative models: 
M. Lupo Pasini, J. Yin, Stable Parallel Training of Wasserstein Conditional Generative Adversarial Neural Networks, 
Published, Computational Science & Computational Intelligence (CSCI’21) 
https://ieeexplore.ieee.org/document/9799213 

Surrogates model for microscale - HydraGNN:
1. M. Lupo Pasini, M. Burcul, S. T. Reeve, M. Eisenbach, S. Perotto, Fast and accurate predictions of total energy 

for solid solution alloys with graph convolutional neural networks, Published, Smoky Mountain Conference 2021 
https://link.springer.com/chapter/10.1007/978-3-030-96498-6_5  

2. M. Lupo Pasini, V. Reshniak, M. Stoyanov, Anderson Acceleration for Distributed Training of Deep Learning 
Models, Published, IEEE South Eeast Conference 2022 https://ieeexplore.ieee.org/document/9763953 

3. M. Lupo Pasini, P. Zhang, S. T. Reeve, J. Y. Choi, Multi-task graph neural networks for simultaneous prediction of 
global and atomic properties in ferromagnetic systems, Published, Machine Learning: Science and Technology 
https://iopscience.iop.org/article/10.1088/2632-2153/ac6a51/meta 

4. P. Laiu, Y. Yang, J. Y. Choi, M. Lupo Pasini, D. Shin, A Neural Network Approach to Predict Gibbs Free Energy of 
Multi-component Solid Solutions, Published, Journal of Phase Equilibria and Diffusion Kinetics

5. A, E. Blanchard, P. Zhang, K. Mehta, D. Bhowmik, J. Gounley, S. T. Reeve, S. Irle, and M, Lupo Pasini, 
Computational Workflow for Accelerated Molecular Design Using Quantum Chemical Simulations and Deep 
Learning Models, Smoky Mountain Conference 2022, Accepted, Smoky Mountain Conference 2022

6. M. Eisenbach, M. Karabin, M. Lupo Pasini, J. Yin, Statistical Mechanics of Materials using First Principles 
Calculations and Machine Learning, Smoky Mountain Conference 2022, Accepted, Smoky Mountain 
Conference 2022 

https://ieeexplore.ieee.org/document/9799213
https://link.springer.com/chapter/10.1007/978-3-030-96498-6_5
https://ieeexplore.ieee.org/document/9763953
https://iopscience.iop.org/article/10.1088/2632-2153/ac6a51/meta
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Surrogates model for microscale - HydraGNN:

1. Jong Youl Choi, P. Zhang, K. Mehta, A. Blanchard, M. Lupo Pasini, Scalable training of graph convolutional 
neural networks for fast and accurate predictions of HOMO-LUMO gap in molecules, Published, Journal of 
Cheminformatics 14(70), 2022. https://doi.org/10.1186/s13321-022-00652-1 

2. M. Eisenbach, M. Karabin, M. Lupo Pasini, J. Yin, Statistical Mechanics of Materials using First Principles 
Calculations and Machine Learning, Smoky Mountain Conference 2022, Accepted

3. S. T. Reeve, P. Zhang, M. Lupo Pasini, D. Lu, Uncertainty quantification for atomic predictions from graph 
convolutional neural networks, Submitted to Modelling and Simulation in Materials Science and Engineering

4. M. Lupo Pasini, GS Jung, S. Irle, Graph neural networks predict energetic and mechanical properties for models 
of solid solution metal alloy phases, Submitted to Computational Materials Science

Surrogate models for mesoscale:

Paul Laiu, Ying Yang, Massimiliano Lupo Pasini, Jong Youl Choi, Dongwon Shin, 
A Neural Network Approach to Predict Gibbs Free Energy of Ternary Solid Solutions, Journal of Phase Equilibria and 
Diffusion, Accepted

Publications from May 2022 through December 2022

https://doi.org/10.1186/s13321-022-00652-1

