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Why need protein language models?

 Proteins are biomolecules composed of twenty natural

amino acids
* Proteins play a central role in human health

support the regulation
and expression
of DNA and RNA
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Why need protein language models?

* The protein universe is huge.
* (One cell may have ~10 K different types of proteins)

* We need tools to provide reliable information about
proteins in a quick way



Why need protein language models?

* Proteins structures determine their properties
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Why need protein language models?

* |t is quite natural to find similarities between the protein
primary structure and a sentence

Protein sequence
SR | |

Gly  lle | Val Glu GIn | Cys Cys Ala Ser| Val Cys| Ser Leu Tyr GIn Leu  Glu Asn  Tyr | Cys | Asn
| I/

A sentence
| will present at the CCS 2023 summit.

Thus, protein language models can be the tool we are
looking for.

https://www.khanacademy.org/science/biology/macromolecules/proteins-and-amino-
acids/a/orders-of-protein-structure



A typical protein language model
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The development of a protein language model is similar to the development of
a language model.

One of the most valuable products is the embedding of the language model.
We could use the embedding to develop downstream tasks for protein design
and property prediction

What is embedded in the embedding is the key

https://www.biorxiv.org/content/10.1101/2020.12.15.422761v1.full



The current protein language models
learn the primary structure

* Proteins structures determine their properties
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We must let the protein language
model learn the other structures
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Multiview contrastive learning enables the
fusion of information from different sources
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Proceedings of the 38th International Conference on Machine Learning, PMLR 139:8748-8763, 2021.



Multiview contrastive learning enables the
fusion of information from different sources
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The architecture of our model

Protein sequences Protein contact maps
- - . Channel 1 Channel 2 Channel 3
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https://arxiv.org/abs/2002.05709

We adapt simCLR
loss function



What is contact map?
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Contact map is a 2D
matrix.

The element (i,j) is the
distance between amino
acid i and j.

The distance is
determined based on
the Ca atom



Where to get the protein structure?

* We cannot do our work without the great
AlphaFold?2
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Protein Structure Databas

Developed by DeepMind and EMBL-EBI

Examples: Free fatty acid receptor 2 At1g58602 Q5VSL9 E. coli

AlphaFold DB provides open access to over 200 million protein
structure predictions to accelerate scientific research.

https://alphafold.ebi.ac.uk/



Our data

* Swiss-Prot Database (~ 580 K protein sequences)
* Gain the 3D structure from AlphaFold2 predictions

* Gain the contact map using self-developed Python
code.

https://alphafold.ebi.ac.uk/



Some other useful detalil

* 540 K proteins for training

* 40 K proteins for validation

* Play with hyperparameters

* Trained on our LCC V100

* Code developed based Pytorch



Some preliminary results

After contrastive learning

Before contrastive learning
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Contrastive learning enhances the alignment between

sequence and structure embedding.

This enhancement implies that the embedding knows

structure better

https://www.biorxiv.org/content/10.1101/2023.08.06.552203v1.full



CATH superfamily task
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Our sequence embedding performs better on structure task
than the original ESM2 model



Some preliminary results

Tasks Metrics S-PLM PEER paper ESM-1b
Betalactamase
B =~ tac) Spearmanr 0.90 (0.002) 0.84 (0.053)
So(msg:l)ny Accuracy 72.09 (0.002) 70.23 (0.75)
SUW"“;"S'U'g;‘a"za‘”“ Accuracy 79.84* (0.001) 79.82* (0.18)
Smnigfg;;"‘d“’e Accuracy 86.88* (0.001) 83.14* (0.10)

* Used as a feature extractor with the pre-trained PLM weights frozen. The task names used in
the PEER paper (Table 3 [18] ) are indicated in parentheses.

https://arxiv.org/abs/2206.02096



Summary

* We have successfully implemented structure
information into sequence embedding

* The developed structure-aware protein language
models perform better in some downstream tasks



