S-PLM: Structure-aware Protein Language Model via Contrastive Learning between Sequence and Structure

Qing Shao

qshao@uky.edu

Department of Chemical and Materials Engineering

University of Kentucky

https://www.biorxiv.org/content/10.1101/2023.08.06.5 52203v1.full

Acknowledgment

- Dr. Duolin Wang (U. Missouri)
- Dr. Dong Xu (U. Missouri)
- Dr. Jin Chen (Uky, currently U. Alabama)
- Usman Abbas (UKy)
- Funding Support:
- University of Kentucky Start-up Funds
- AI for Medicine Alliance Pilot

- Proteins are biomolecules composed of twenty natural amino acids
- Proteins play a central role in human health

https://www.compoundchem.com/2014/09/16/aminoacids/

https://www.eufic.org/en/whats-in-food/article/what-are-proteins-and-what-is-their-function-in-the-body

- The protein universe is huge.
- (One cell may have ~10 K different types of proteins)
- We need tools to provide reliable information about proteins in a quick way

• Proteins structures determine their properties

https://www.mun.ca/biology/scarr/iGen3_06-04.html

• It is quite natural to find similarities between the protein primary structure and a sentence

A sentence I will present at the CCS 2023 summit.

Thus, protein language models can be the tool we are looking for.

https://www.khanacademy.org/science/biology/macromolecules/proteins-and-aminoacids/a/orders-of-protein-structure

A typical protein language model

The development of a protein language model is similar to the development of a language model.

One of the most valuable products is the embedding of the language model. We could use the embedding to develop downstream tasks for protein design and property prediction

What is embedded in the embedding is the key

https://www.biorxiv.org/content/10.1101/2020.12.15.422761v1.full

The current protein language models learn the primary structure

• Proteins structures determine their properties

https://www.mun.ca/biology/scarr/iGen3_06-04.html

We must let the protein language model learn the other structures

https://www.mun.ca/biology/scarr/iGen3_06-04.html

Multiview contrastive learning enables the fusion of information from different sources

Proceedings of the 38th International Conference on Machine Learning, PMLR 139:8748-8763, 2021.

Multiview contrastive learning enables the fusion of information from different sources

Proceedings of the 38th International Conference on Machine Learning, PMLR 139:8748-8763, 2021.

https://arxiv.org/abs/2002.05709

What is contact map?

Contact map is a 2D

matrix.

36

32

12

8

4

0

The element (i,j) is the 28

- distance between amino 24
- 91 Distance (Å) acid i and j.

The distance is

determined based on

the Cα atom

Where to get the protein structure?

• We cannot do our work without the great AlphaFold2

AlphaFold DB provides open access to over 200 million protein structure predictions to accelerate scientific research.

https://alphafold.ebi.ac.uk/

Our data

- Swiss-Prot Database (~ 580 K protein sequences)
- Gain the 3D structure from AlphaFold2 predictions
- Gain the contact map using self-developed Python code.

Some other useful detail

- 540 K proteins for training
- 40 K proteins for validation
- Play with hyperparameters
- Trained on our LCC V100
- Code developed based Pytorch

Contrastive learning enhances the alignment between sequence and structure embedding. This enhancement implies that the embedding knows structure better

https://www.biorxiv.org/content/10.1101/2023.08.06.552203v1.full

CATH superfamily task

Our sequence embedding performs better on structure task than the original ESM2 model

Some preliminary results

Tasks	Metrics	S-PLM	PEER paper ESM-1b
Betalactamase ($\beta - lac$)	Spearmanr	0.90 (0.002)	0.84 (0.053)
Solubility (Sol)	Accuracy	72.09 (0.002)	70.23 (0.75)
Subcellular localization (Sub)	Accuracy	79.84* (0.001)	79.82* (0.18)
Secondary structure (SSP)	Accuracy	86.88* (0.001)	83.14* (0.10)

* Used as a feature extractor with the pre-trained PLM weights frozen. The task names used in the PEER paper (Table 3 [18]) are indicated in parentheses.

https://arxiv.org/abs/2206.02096

Summary

- We have successfully implemented structure information into sequence embedding
- The developed structure-aware protein language models perform better in some downstream tasks